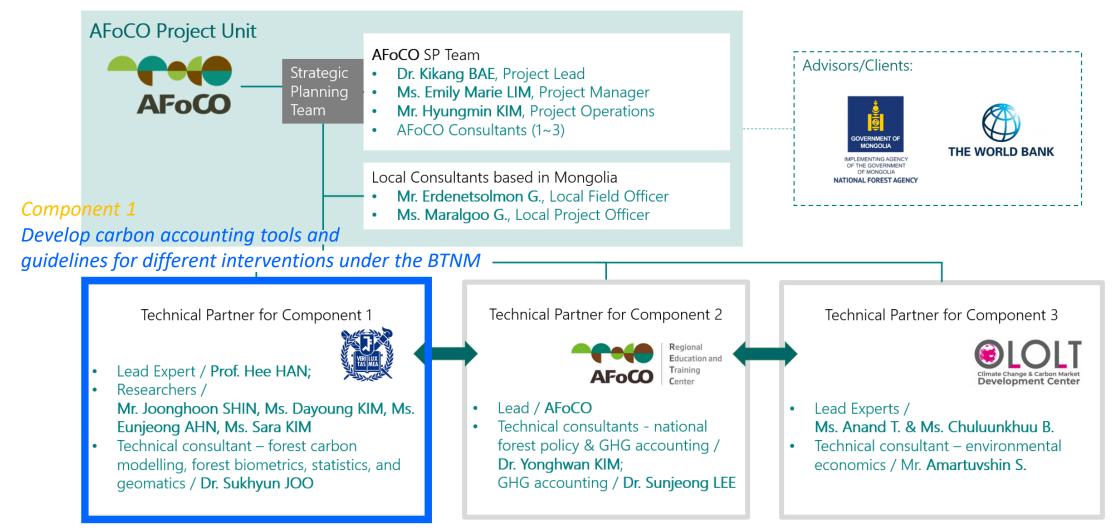
Session 7 EX-ACT Practical Applications in Mongolia

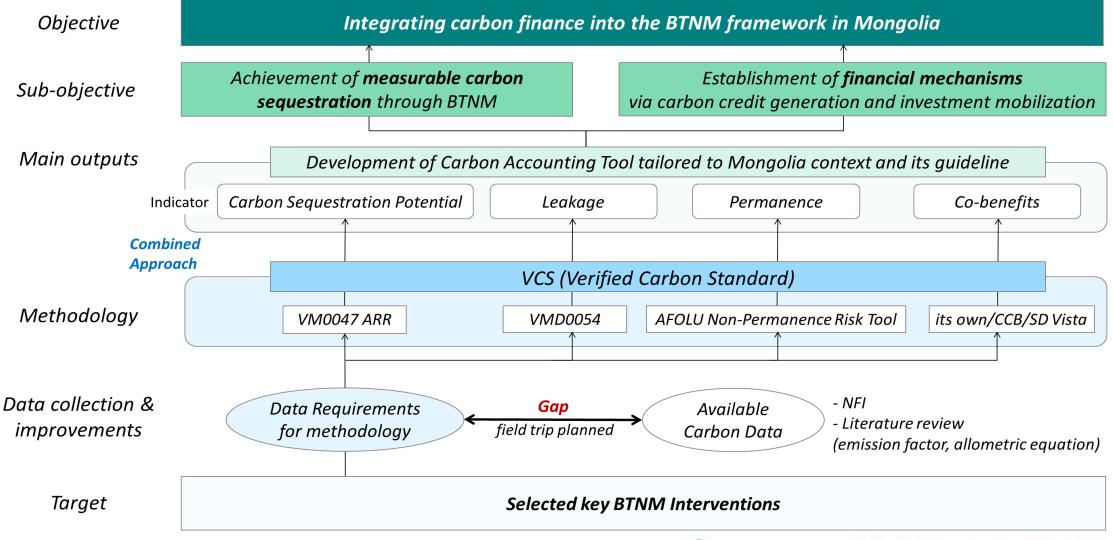
Assessing Carbon Sequestration Potential through Mongolia's Billion Trees National Movement


How Much Mongolia's Forests Can Contribute to Carbon Sequestration

"Since August last year, we have been working to understand the carbon benefits of Mongolia's BTNM and to explore how it can lead to meaningful, field-based carbon projects.

Today's presentation highlights the key findings from our work to date and outlines how we applied the EX-ACT tool to assess the carbon sequestration potential of Mongolia's forests under the BTNM, and how this analysis informed the selection of key interventions."

1. Project Consortium

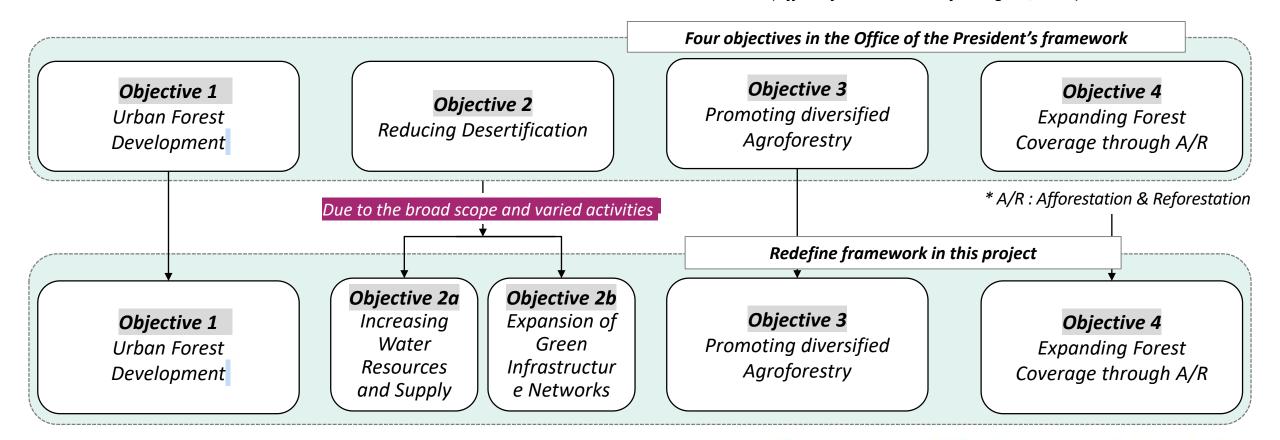

Potential Collaboration with Researchers from:

2. Framework for Developing a Carbon Accounting Tool

First, how do we define the interventions?

3. The Identification of BTNM Interventions

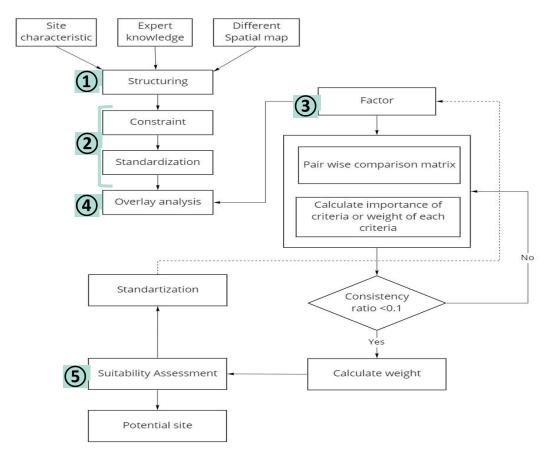
- What does 'interventions' mean in the context of this project?
- The definition can be reasonably based on the primary objectives outlined in the official framework


(Office of the President of Mongolia, 2023)

	Objectives	Activity
1	Maintaining and increasing the ecological balance of settlements, improving the living conditions of the people, developing "Urban Forest"	 Public utility For Special needs Limited use
2	Reducing desertification, sources of dust storms, and mitigating sand migration	 Protecting and restoring oasis Construction of a forest strip to protect farmland Rehabilitation of large rivers Protection and restoration of river beds Protection of springs and ponds Construction of forest strips for road protection Construction of forest strips for railway protection Establishment of forest along infrastructure (rail, train station, borders facilities, road)
3	Development of diversified <mark>agro-forestry</mark> in line with the goal of the national movement "Food supply and security"	 Establishment of fruit farms Establishment of agroforestry Establishment of saxaul and other medical plants Cooperative framing
4	Reducing deforestation and degradation and increasing the area covered by forests	 Restoration of degraded forests Restoration of sedge forests Assist in natural regeneration

3. The Identification of BTNM Interventions

- This framework prioritizes "tree planting actions" across urban, agricultural, and degraded forest areas etc.
- It offers a structured way to evaluate suitable areas and carbon sequestration potential for each intervention (Office of the President of Mongolia, 2023)



Then, how can we quantify the carbon sequestration potential associated with each intervention?

4. Multicriteria GIS Analysis for Assessing Tree Planting Suitability

• Determine suitable areas for each intervention across Mongolia based on a multicriteria GIS analysis

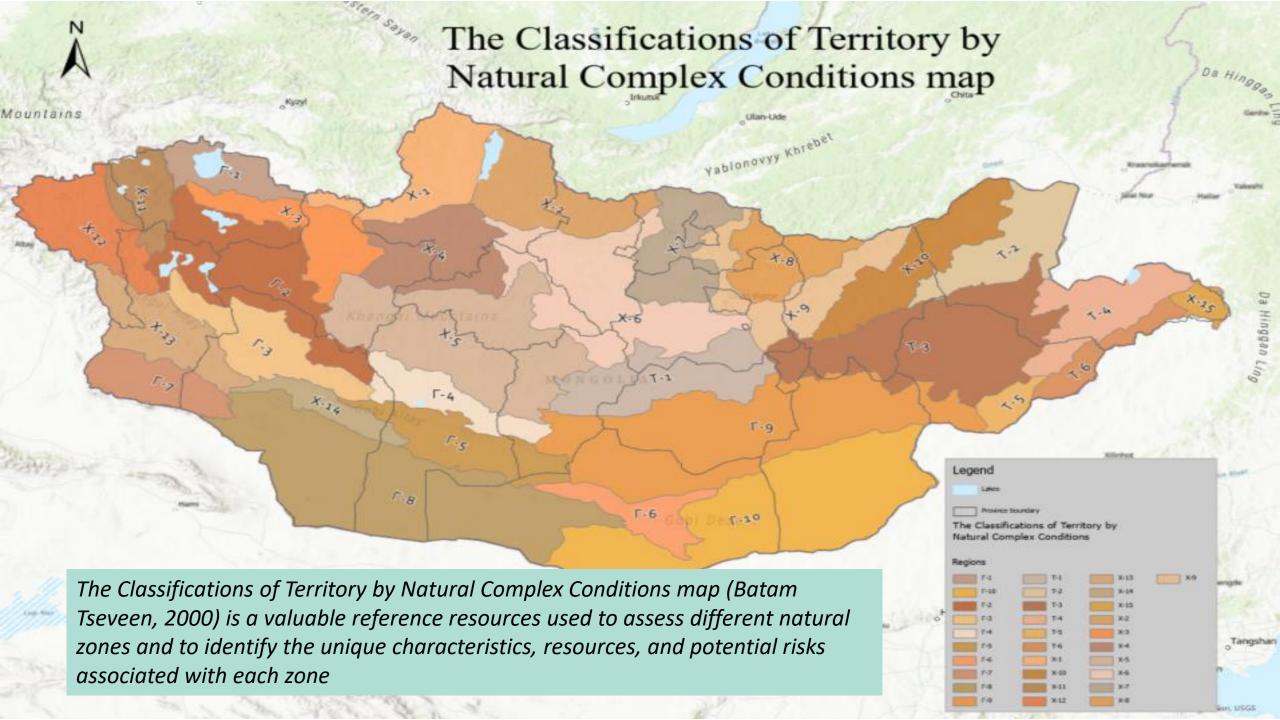
In terms of i) Maximizing carbon sequestration potential and ii) minimizing any adverse environmental impacts

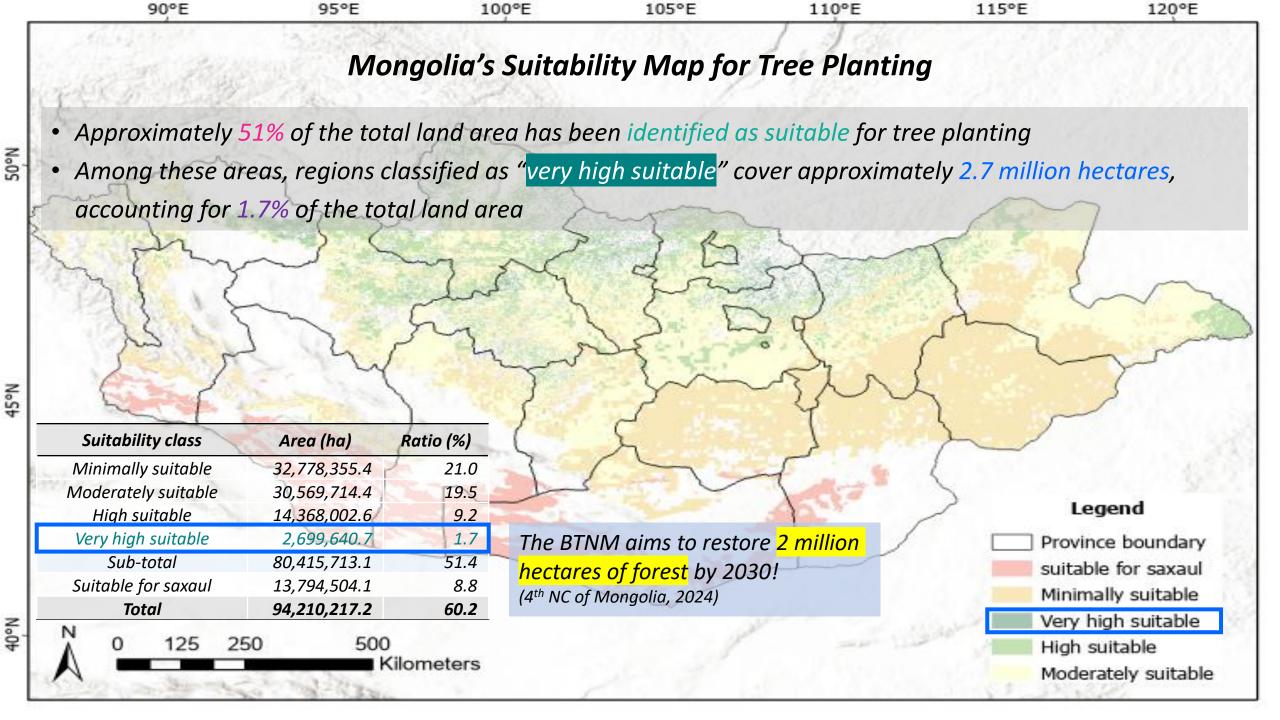
1 Structuring and Data Collection

- Ecosystem distribution, Slope, Aspect, Air temperature, Precipitation, Boreal Forest change map
- **2** Setting Constraints and Standardizing Data
- Constraints to exclude non-contiguous areas
- 3 Factor Weighting via Pairwise Comparison
- AHP(Analytical Hierarchy Process) will be employed
- 4 Overlay Analysis
- **5** Suitability Assessment and Identification of Potential Sites

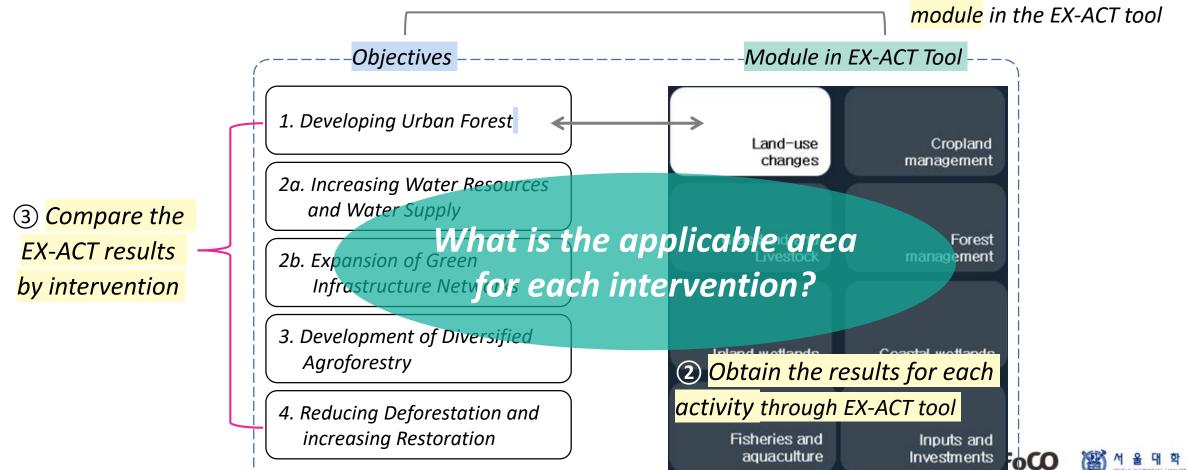
4. Multicriteria GIS Analysis for Assessing Tree Planting Suitability

- Multicriteria GIS Analysis to identify areas suitable for tree planting activities in BTNM
- Two types of input data are considered:
 - 1) Vector data: NFI, Ecosystem distribution, Natural complex conditions, Road network, Urban area, Surface waters...
 - 2) Raster data: Topography, Climate condition, Forest cover changes...


Data type	Source	Optimal range/Condition
Ecosystem distribution	The national scale ecosystem	The Natianol Level
	distribution map, EIC	
Forest Inventory Data	Forest Agency	The Natianol Level
(NFI)		
CropLand	ALAMGC	The National Level
The Classifications of	Badam Tseveen, Gazar Servis	Weighted score: X=1,
Territory by Natural	LLC	T=0.6 and G=0
Complex Conditions man		
Road Newtwork	Open street map and	The National Level
	ALAMGC	

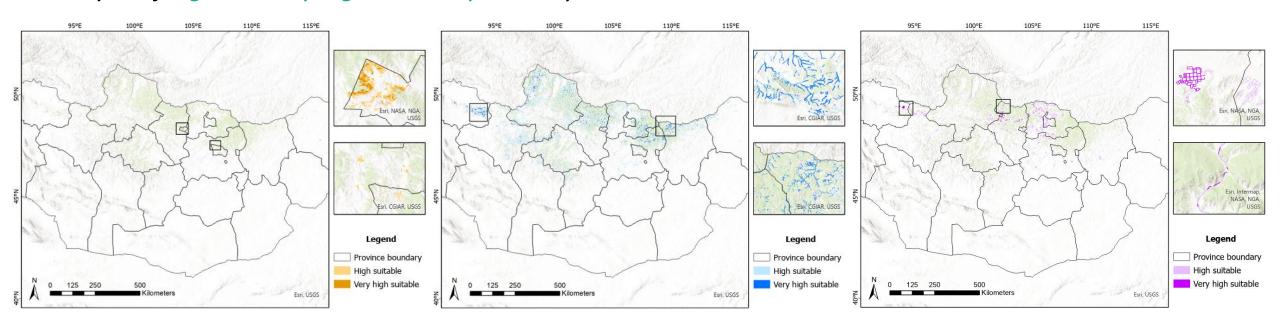

This map helps in understanding the ecological balance, biodiversity, and suitability of land for various uses such as agriculture, forestry, urban development, or conservation (See the next slide)

Data type	Source	Optimal range/Condition
Slope	SRTM90m DEM data	USGS, NASA
Aspect	SRTM90m DEM data	USGS, NASA
Air temperature	The mean temperature, 1950- 2012, IRIMHE	Broadleaves: -1.18°C and - 2.41°C Larch: 7.47°C and -3.09°C Pinus: -0.69°C and -2.19°C
Precipitation	The annual precipitation, 1950-2012, IRIMHE	Broadleaves: 346 mm-320.3 mm Larch: 286.65mm-327.92mm Pinus: 312mm-346mm
Boreal Forest change map	GLC_FC30	Forest change map between 1990-2022
Urban Area	Sentinel-2 Global Land Cover Data	2023
Current Forest Cover Data	Sentinel-2 Global Land Cover Data	2023



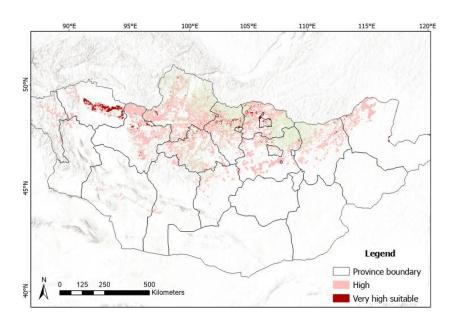
- Use EX-ACT tool to compare the estimated potential carbon sequestration for each intervention
- Serve as the primary basis for selecting three major interventions

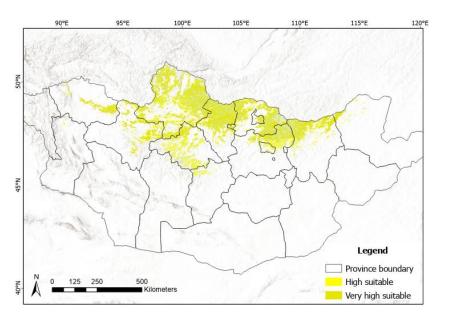
Link the Activity w/ the corresponding module in the EX-ACT tool



• Relevant spatial data were used to extract potential area for each intervention from the suitability map

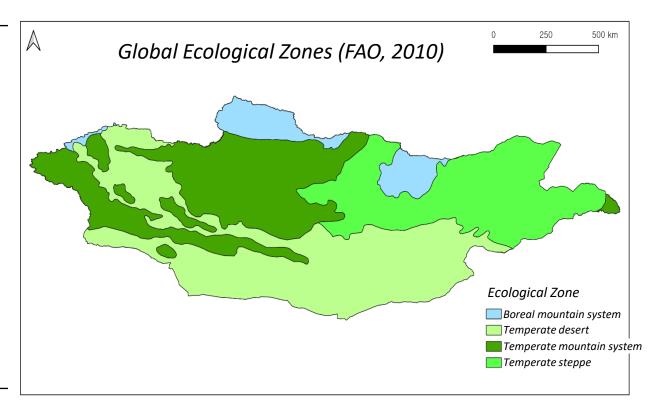
Ma	Intervention	Activity	Spatial parameters		
No	intervention	Activity	GIS data	Buffer(m)	
1	Developing Urban Forest	Public utility Special needs Limited use	Urban area map	-	
2a	Increasing water resources and water supply	Protecting and restoring oasis Rehabilitation of large rivers Protection of springs and ponds Protection and restoration of river beds	Oasis map Rivers map Spring map Seasonal rivers map	50 200 50 50	
2b	Expansion of green infrastructure	Construction of a forest strip to protect farmland Construction of forest strips for road protection Construction of forest strips for railway protection Establishment of forest along infrastructure	Cropland area map Roads map Railways map Excluded due to lack of sp	30 30 30 atial data	
3	Development of Diversified Agroforestry	Establishment of fruit farms Establishment of garoforestry	Potential agroforestry map	-	
4	Reducing deforestation and increasing Restoration	Restoration of degraded forests Restoration of saxaul forests	Degraded Forest map Potential Saxaul forest map	-	
•		Assist in natural regeneration	Existing Forest map	100	


Analysis of high and very high suitability areas by intervention



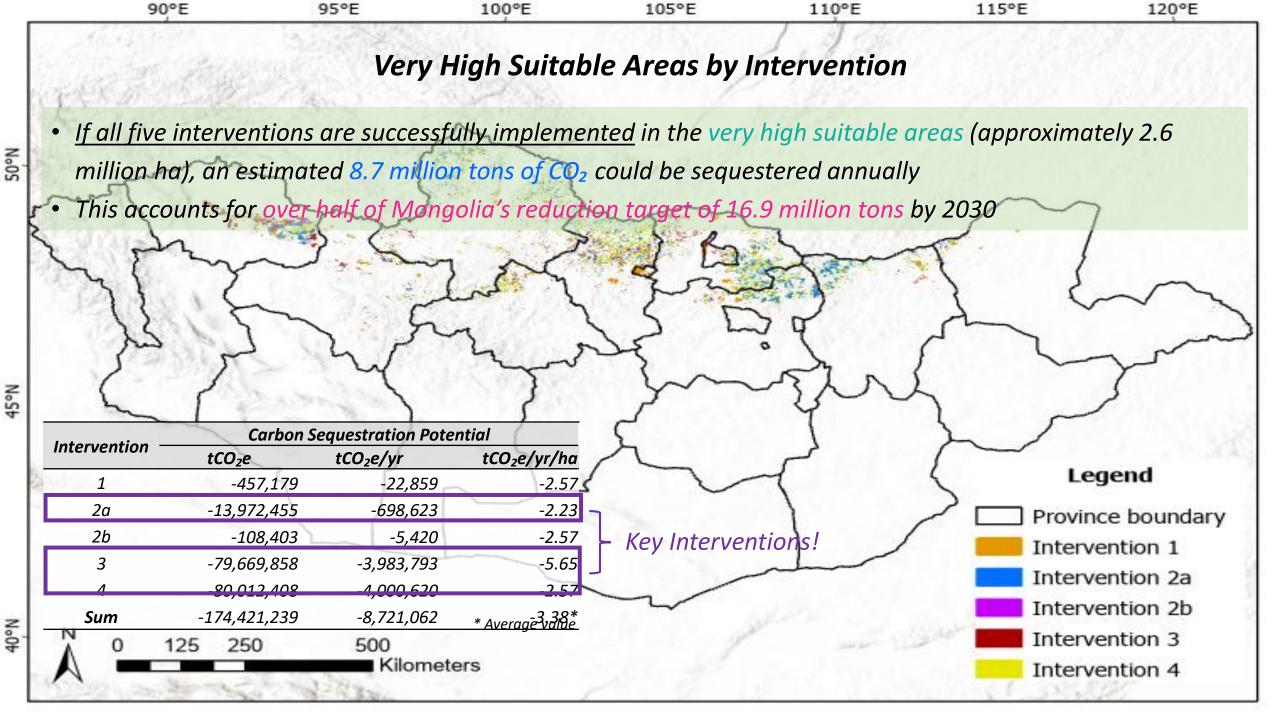
Suitability Class	bility Class Intervention 1 Intervention 2a Intervention 2b Intervention 3		Intervention 3	Intervention 4	Sum	
High	76,800	1,043,528	32,621	8,528,305	4,281,058	13,962,312
Very high	8,895	304,649	2,109	705,241	1,562,105	2,582,999
Sum	85,695	1,348,177	34,730	9,233,546	5,843,163	29,684,338

• Analysis of high and very high suitability areas by intervention



Suitability Class	Suitability Class Intervention 1		bility Class Intervention 1 Intervention 2a Intervention 2b Intervention 3		Intervention 3	Intervention 4	Sum
High	76,800	1,043,528	32,621	8,528,305	4,281,058	13,962,312	
Very high	8,895	304,649	2,109	705,241	1,562,105	2,582,999	
Sum	85,695	1,348,177	34,730	9,233,546	5,843,163	29,684,338	

• Input parameters for <u>project description</u>


	Continent	Eastern Asia
	Country	Mongolia
	Climate	Boreal, Cool Temperate
	Moisture	Dry
	Soil Type	High activity clay soils
Project duration	Implementation Phase	8
	Capitalization Phase	12

• Input parameters for <u>project activity</u> - land-use and project area

			Land-use		Project Area (ha)		
No.	Intervention	to the of town days a			Without With project		Additional assumptions
		Initial land-use	Final land-use	project	Climate (EZ)	area	
					Boreal	178	Reduced tillage, Medium C input,
1	Developing urban forest	Degraded land	Hedgerow	0	Temperate	8,716	No residue/biomass burning
					sub-total	8,895	No residue/bioinuss burning
			Forest vegetation		Boreal mountain system	171,745	
	Increasing		- Boreal mountain system		Temperate desert	666	
2a	water resources and	Degraded land	- Temperate desert	0	Temperate mountain system	91,045	_
	water supply	r supply	- Temperate mountain system		Temperate steppe	41,193	
			- Temperate steppe		sub-total	304,649	
	Expansion of				Boreal	152	Reduced tillage, Medium C input,
2b	green infrastructure	Degraded land	Hedgerow*	0	Temperate	1,957	No residue/biomass burning
	green mjrustructure				sub-total	2,109	No residue, biolituss bullillig
	Development of				Boreal	57,284	Reduced tillage, Medium C input,
3	diversified agroforestry	Degraded land	Agroforestry (default)	0	Temperate	647,957	No residue/biomass burning
		ijiea agrojorestry			sub-total	705,241	
			Forest vegetation		Boreal mountain system	727,346	
	Reducing deforestation		- Boreal mountain system		Temperate desert	<i>857</i>	
4	and increasing	Degraded land	- Temperate desert	0	Temperate mountain system	621,432	_
	restoration		- Temperate mountain system		Temperate mountain system	212,470	
			- Temperate steppe		sub-total	1,562,105	

Comparison with the analysis results of

Mongolia's Fourth National Communication (2024)

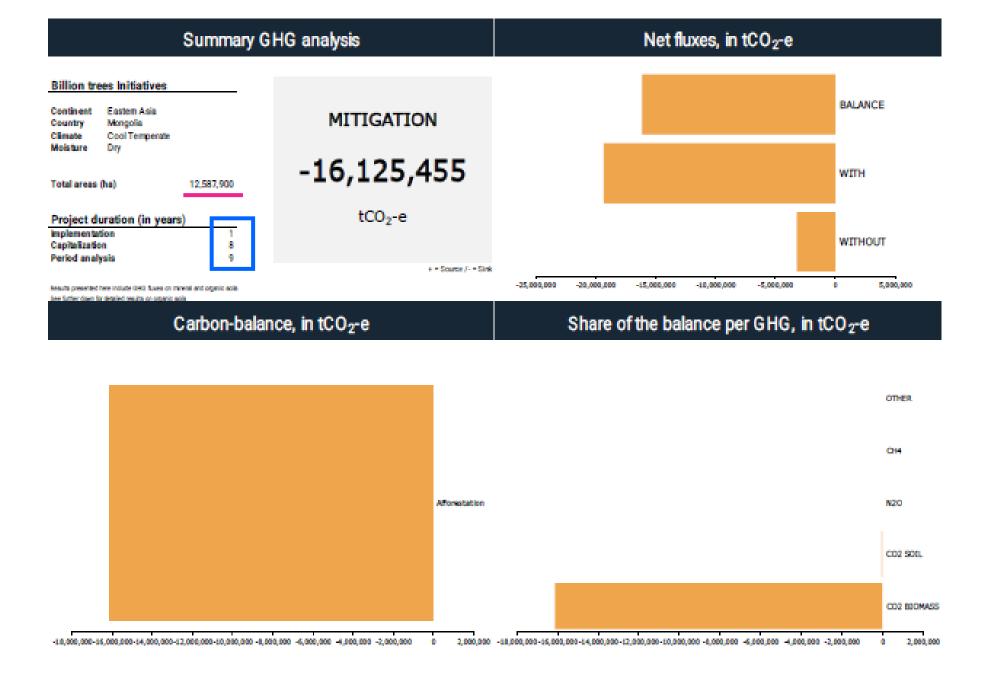


Figure 7.21 Estimation of the results of the "Billion Tree" national campaign using the EX-ACT tools

DETAILED RESULTS

Project name Billion trees Initiatives

Continent Eastern Asia
Country Mongolia
Climate Cool Temperate

Moisture Dry

Project duration (in years)	
Implementation	1
Capitalization	
Period analysis	9

Total area (ha)	12,587,900
Mineral soil	12,587,900
Organic soil	0
Waterbodies	0

Global warming potential	
CO2	1
CH₄	34
N ₂ O	298

GROSS FLUXES

SHARE PER GHG OF THE BALANCE

NOO-AR

in 100, re over the whole period analysis

in 100 ye over the whole period analysis

PROJECT	COMPONENTS	WITHOUT	WITH	BALANCE	CO: BIOMASS	CO2 SOIL	NeO	CHA	ALL HON- AFOLU EMISSIONS*
Land use	Deforestation	0	0	0	0	0	0	0	
changes	Afforestation	-3,180,746	-19,305,201	-16,125,455	-16,125,413	-42	0	0	
Giarges	Other land-use	0	0	0	0	0	0	0	
	Annual	0	0	0	0	0	0	0	
Cropland	Perennial	0	0	0	0	0	0	0	
	Flooded rice	0	0	0	0	0	0	0	
Grasslands 8	Grasslands	0	0	0	0	0	0	0	
Livestock	Livestock	0	0	0			0	0	
	Forest mngt.	0	0	0	0	0	0	0	
	Inland wetlands	0	0	0	0	0	0	0	
	Coastal wetlands	0	0	0	0	0	0	0	0
	Inputs & Invest.	0	0	0		0	0		0
Total emissi		-3,180,746	-19,306,201	-16,125,455	-16,125,413	-42	0	0	0
	ons, 100 _z e/ha	40.3	-1.5	-1.3	-1.3	0.0	0.0	0.0	0.0
Total emissi	ons, 900 se/ha/yr	0.0	-0.2	-0.1	-0.1	0.0	0.0	0.0	0.0

	and the second second		
	WITHOUT	WITH	BALANCE
	0	0	0
	353,416	-2,145,133	-1,791,717
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
_			
	353,416	-2,145,133	-1,791,717

AVERAGE ANNUAL EMISSIONS

					-
+11	200	17.0	7-	100	nk.

Results presented here include CHO Naxes on mineral and organic solis

See bother down for detailed results on organic soils.

Uncertainty level	10:02-eşr	Pesent
Without	-353,416	20%
With	-0,145,133	20%
Belleron	-1,791,717	200

^{*}Includes fisheries, acquaculture and inputs & investments that are not included in the AFOLU definition.

Thank You

